Maximum Matchings in Regular Graphs of High Girth

نویسندگان

  • Abraham D. Flaxman
  • Shlomo Hoory
چکیده

Let G = (V,E) be any d-regular graph with girth g on n vertices, for d ≥ 3. This note shows that G has a maximum matching which includes all but an exponentially small fraction of the vertices, O((d − 1)−g/2). Specifically, in a maximum matching of G, the number of unmatched vertices is at most n/n0(d, g), where n0(d, g) is the number of vertices in a ball of radius b(g − 1)/2c around a vertex, for odd values of g, and around an edge, for even values of g. This result is tight if n < 2n0(d, g).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of matchings in random graphs

We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdös-Rényi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm ...

متن کامل

Randomized Greedy Algorithms for Independent Sets and Matchings in Regular Graphs: Exact Results and Finite Girth Corrections

We derive new results for the performance of a simple greedy algorithm for finding large independent sets and matchings in constant degree regular graphs. We show that for r-regular graphs with n nodes and girth at least g, the algorithm finds an independent set of expected cardinality f(r)n−O ( (r−1) g2 g 2 ! n ) , where f(r) is a function which we explicitly compute. A similar result is estab...

متن کامل

Small Regular Graphs of Girth 7

In this paper, we construct new infinite families of regular graphs of girth 7 of smallest order known so far. Our constructions are based on combinatorial and geometric properties of (q + 1, 8)-cages, for q a prime power. We remove vertices from such cages and add matchings among the vertices of minimum degree to achieve regularity in the new graphs. We obtain (q + 1)-regular graphs of girth 7...

متن کامل

Relationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications

ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...

متن کامل

On path decompositions of 2k-regular graphs

Tibor Gallai conjectured that the edge set of every connected graph G on n vertices can be partitioned into ⌈n/2⌉ paths. Let Gk be the class of all 2k-regular graphs of girth at least 2k − 2 that admit a pair of disjoint perfect matchings. In this work, we show that Gallai’s conjecture holds in Gk, for every k ≥ 3. Further, we prove that for every graph G in Gk on n vertices, there exists a par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007